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Absbact The I/d expansion method for polymer chains is examined by comparing these 
expansions for several thermodynamic and structural quantities with the rsults of standard 
series analysis of exact enumeration data. The comparisons cover a wide range of spatial 
dimensions d, including non-integer ones, and are performed for particular values of inter- 
action energy. Good agreement is generally found for d>b, whereas discrepancies h o m e  
conspicuous as d decreases to d=2. Reasonable values are obtained for the exponents v 
and y ind=2-4 by applyingthewherqt-anomaly method of Smukito our I/dexpansions 
through fifth order in d-‘. 

1. Introduction 

Polymers in dilute solutions can be reasonably modelled by lattice self-avoiding walks 
(SAW) with nearest-neighbour interactions [l]. Consequently, the lattice model of ‘poly- 
mers’ has been extensively investigated using both analytical and numerical methods 
(see e.g. [2]) .  The geometrical properties of SAW can also be described in terms of a 
‘critical phenomena’ formulation. Specifically, SAW is related to the N=O limit [3] of 
the classical N-vector model and for this reason the geometrical properties of SAW 

attract a much broader interest. 
Fisher and Gaunt [4] first established the formal l/d expansion method for SAW 

on a--ddimensional lattice along with that for the Ising model ( N =  1). They derive 
expansions in power of d-’ for both the number C. of n-step SAW and the connectivity 
constant p through fifth order in the large-n limit by exploiting information from exact 
enumeration of SAW for small n. The validity of such expansion series is rigorously 
shown by Kesten [5] in high dimensions. The corresponding expansion of p for 
neighbour-avoiding walks (NAW) is given by Gaunt et ai [6] through O ( Z 3 ) .  Further 
extension to the general N-vector model and for a model for random branch polymers 
are provided by Gerber and Fisher [7] and Gaunt ef of [8], respectively, while Gaunt 
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[9] has obtained the l/d expansion of the free energy amplitude for SAW through 
O(d-'). 

Recently, we have developed a more general l/d expansion method for SAW having 
nearest-neighbour contact energy w. This method employs input information from the 
lattice cluster theory [ 101 and has been used to provide l/d expansions of the partition 
function [I l l  and the mean-square end-to-end distance [12] of SAW through O(d-3. 
The new feature of this work is the fact that these expansions are obtained with the 
full @-dependence for any d (including non-integer ones) using exact enumeration data 
for n up to eleven in d=2-6. 

This paper uses the expansion of the free energy from [I 11 to derive l/d expansions 
for the internal energy and the specific heat that are valid in the large-n limit and that 
are complete functions of temperature (i.e. of w). These quantities, together with the 
respective amplitudes Ac and An of the free energy and the end-to-end distance, are 
compared with results from standard series analysis of the exact enumeration data over 
a wide range of dimensions d for the three representative M S ~ S  of SAW, NAW and 0' 
chains near the theta point. (The precise definition of 8' chains is provided in the next 
section). Moreover, we estimate the critical exponents y and v for SAW and 0' chains 
in some selected dimensions d by combining the respective l/d expansions for Ac.  AR 
and p with the coherent anomaly method (CAM) of Suzuki [13]. 

2. l ld  expansion 

We consider the Orr model [ 11 of a polymer chain in dilute solutions. The partition 
function of the chain with nearest-neighbour interaction energy E., is represented by 

C,(w)= 1 C,,e" 
m-0 

where w = -&,./kT and Cn," is the number of n-step SAW with m non-bonded nearest 
neighbours on a d-dimensional hypercubic lattice. In general, Cn," may be expressed as 
[I11 

with the full dimensionality dependence present in the binomial factor. The d- 
independent positive integers @:?"} may be obtained using exact enumeration data for 
Cn,,. Values of b$b} for n < 1.1 and methods for determining the b:!b} are given in 
[Ill. It should be noted that once the @$?J are evaluated, (2) yields a set of C', for 
n d 11 that are valid for any d, even for non-integer dimensionalities. 

By analogy with the SAW, theta, etc, limits, we introduce interaction-dependent 
crossover scaling assumption 

Cn(o) EAc(w)n'(m)-'p( w)" (3) 

F*(w)=log p ( w ) =  lim n-'log c.(w). 

and define the reduced free energy by 

(4) 
"-.cc 
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Setting y=‘l in (3) andf=e”- 1 andusing results from 1111 generate the I/dexpansion 
from (4) 

F*(B =log o+fa-’ - (1 - f - $ 2 ) 0 - 2 -  (2 - 7f- I lf2- 5y )0 -3  

- (1 1; - 35f- 5 8 2 -  56f3 - 2 5 p  3 f ) ~ - ~  

- (64 - 250f-251f2- 532f3 - 379f - 125$- 14f-70-’-. . . I (5) 
and the expansion for the free energy amplitude 
A c ( f ) = ( I  +~-‘)[1-2fo-’+(3-8f-6f~)(r-~+(13-70f-75f~-28f~)0-~ 

+ (107 - 5SSf- 685f2 - 456f3 - 161f - l S f ) r ~ - ~  

+ (895 - 581 8f- 5192f2 - 601 8f3 - 341 7f- 988f - l22f6)o-’ + . . . ] (6) 

where cr=2d- 1. Similarly, the amplitude for the mean-square end-to-end distance 
& is obtained from [ 121 as 

A R ( n =  1 + (2- 2f)u-’ + (6- 14f-4f2)o-2 + (28- 102f- 68f2 -22f3)0-’ 

+ (180 - 832f- 712f -412f3 - 134f + 23f)0-~ 

+ (1 382 - 6700f- 10 142f2 - 12 312f3 - 16 658f 

-11 654f-l441f6)0-’+. :. (7) 

using the assumed form 

R;(B zAR(f )n2Y(n  
I with v = a .  

C* = a2F*/aw2, we have from (5 )  

E * ( B  = (1 +nu-’ + (1 + 4f+ 3f)0-~ + (7 + 29f+ 38f2 + 16f3)o-3 

Defining the reduced internal energy E* and specific heat C* by E*=aF*/aw and 

+ (35 + 152f+285f2+ 271f3 + 1 lSf+ 1 5 f ) ~ - ~  

+ (250+ 752f+2098f2+ 31 12f3 +2142f+626f)o-’ + . . . (9) 

and 

C*(n = (1 +Bo-’ + (4 + lOf+ 6f)(r-’+ (29 + 105f+ 124f2+ 48f3)u-’ 

+ (152+ 722f + 1 383f2+ 12S5f3 + 547f + 7 5 f ) ~ - ~  

+ (752 + 4948f+ 13 532f2+ 17 904f3 + 13 698f + 51 3Of)o-’+. . . . (10) 

Values of F*, A c ,  An,  E* and C* for SAW and NAW are determined by substituting 
f = O  andf=-1, respectively, into these equations (of course, E*=C*=O for NAW). 
Thef=O limit of (5) reproduces the I/d expansion of pSAW given by Fisher and Gaunt 
141; thef= -1 case is consistent with that of pNAW by Gaunt et a1 [6] through O(d-3), 
and thef=O limit of AC(n agrees with the result of Gaunt 191. We continue to restrict 
attention to SAW, NAW and 8’ chains, where the latter is defined by havingf= U-’ so 
that the 8’ state is near to the theta point we=l/(a-  1) of the lattice model [14] in 
the large-d limit. 
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Table 1. Values of CnI for SAW on the simde cubic lattice. 
~~ ~~ ~~~ ~~ ~ ~ ~~ 

m C8>" Gm CW," c, I," C,sn 

0 45 054 630 184400910-, , , 755930958 , , ,  , 3089,85,1,782, 12,645781414 
1 57 525 552 256574352 1137418464 5001 796 944 21 899 428 I28 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

C" 

44 547 912 
21 853 008 
14 169312 
6 441 456 
2418264 

651 648 
161 856 
19 104 

198 842742 

214 532 136 
143 817 120~ 
79 878 I 4 4  
38 486 3,04 
17 723 064 
6 191 616 
1 957 344 

289 392 
124 128 

943 974 510 

1019 264 736 
726 606 720 
431 661 240 
224 538 960 
106 521 864 
46 237 488 
I5062256 
4 666 368 

817920 
184 704 

4468911 678 

4183 813 296 
3613 467 552 
2283 391 464 
1273 428 048 
639 155 304 
306 732 000 
124409 592 

1 I 892 576 
3 458 688 

223 392 
102 432 

43 422 984 

21 175 146 054 

22 238 21 I 480 
17 708 666 496 
11 811 895992 
6 950 393 088 
3 711 295 944 
1 836 897 6M) 

841 657 896 
324 33 I 728 
1 I4 649 920 
29 830 656 
8 I32 640 

569 856 
131 136 

100 121 875 974 

3. Series analysis 

Exact values of C.,.(n < 11) from (2) are also used to estimate F*(f) ,  E*( f ) ,  C * ( f )  
and &(f) over a wide range of d for SAW ( ~ = O ) , N A W  (f=-l), and 0' chains by 
using a standard series analysis method (see e.g. [15]). The treatment of &(f) exploits 
the unnormaliied square end-to-end distance 2," for SAW as expressed in a similar form 
to (21, 

where the integer coefficients &,(n<II) are presented in [12]. The mean-square dis- 
tance Ri may be obtained from 

for any d and f. The analysis in d= 2 and 3 uses our exact enumeration data of Cn9- 
and 2,n for nG22 and 16, respectively. The new terms (with n=12-16) for CnJn and 
Dm,,n(=2,n) in d=3 are listed in tables 1 and 2 for convenience. Rapaport [16] has 
obtained C,,,: for nS13. 

The outline of our series analysis is as follows: first form the ratios of alternate 
terms 

p" = ( C " / c n - P  (13) 

p p =  [ a p t - ' )  - (n - 2r)p$12)]/2r 

for the estimation of F*( =log p). Then, construct the Neville tables for their linear, 
quadratic and cubic extrapolants [ 151 

(14) 
for r = l - 3  with pLo)=pm. Subsequently, we estimate p by plotting these extrapolants 
against n-' and extrapolating to n-cc in view of the curvature of convergence as a 
whole and damping oscillations with decreasing n-' as shown in [17]. For example, we 
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Table 2. Values of Dm,. for SAW on the simple cubic lattice. 

m D,*.., Dl3," DM, D U . ~  016," 

0 1369 313 472 6236 190 462 28 141 065 048 125 990 905 734 560 238 622 848 
1 1356 637 248 6878 260 464 34 203 387 648 167 320 375 440 807 175 365 792 
2 821558208 4592 156328 2493L816032 132114193584 685904382528 
3 397 535 616 2439 747 744 14 387 859 552 82 I13 708 192 456 105 866 688 
4 150472128 1039084992 6748 126608 41841510504 250070912544 
5 51 006 240 387 787 104 2 782 259 232 18 765 400 272 120 542 909 856 
6 I5 270 528 135 730 680 , I 047 296 688 
7 3 802 176 39 930 432 369 018 048 
8 627 072 9 907 200 I01 862816 
9 98 496 I 403 856 25 722 240 
IO 
11 

426 432 4 625 280 
757 440 

12 
13 ~ 

14 

4 4166321 184 21760625694 112743796632 

7 625 474 760 
2941 221 888 

968 931 960 
285 963 816 
66 601 248 
16 819968 

781 536 
371 328 

580 052 260 230 

52 866 41 I 456 
21 613 713 120 
8 092 857 984 
2 652 089 856 

795 054 144 
191 363 712 
41 013 696 

3 506 112 
518 976 

2966 294 589 312 

- 

find p = 5.746f0.008 for SAW in d= 3.5. The values of F* thus estimated for SAW,NAW 
and 8' chains are represented in figure 1 as a function of d over the range d=2-6 and 
including non-integer d. The estimates in the range 2 <d< 3 are ill-behaved, especially 
for NAW. The corresponding I/d expansions (5) are depicted by solid curves. Excellent 
agreement with the series analysis is generally found for d>4, whereas deviations 
become conspicuous, as expected, with decreasing d for SAW and NAW. 

d 

Figure 1. The d dependence of the reduced free energy F* as estimated by series extrapola- 
tion methods for SAW (O), NAW (0) and B' chains ( A ) .  Solid curves indicate the ME- 
sponding l ld expansions. 
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I 
2 4 6 8 10 

d 
Figure 3. Same as in figure 2 but for the reduced 
specific heat C'. 

The reduced internal energy e and the specific heat C.* of finite chains may be 
written from (1) as 

.% = <m>/n (15) 

and 

with averages defined by 

We estimate E* and C* for infinite chains by plotting the rth extrapolants (r= 1-3) 
of /$ and C2 against n-' in the same manner as described above for F*. Values of E* 
have already been estimated ftom the exact enumeration of SAW on square and tetra- 
hedral lattices [IS]. Figures 2 and 3 display the estimates of E* and C* for SAW and 
8' chains as functions of d together with the respective I/d expansions from (9) and 
(IO). These figures exhibit a deteriorating agreement between results of series analysis 
and the l / d  expansion as d,decreases, especially for SAW. A noticeable maximum is 
present in the series analysis results near d=3, whereas the l/dexpansions show a rapid 
increase as d decreases. The maximum is sharper for 0' chains than SAW for both E* 
and C*. 

The estimation of Ac is carried out by first estimating y from the extrapolants 
y ! ) = n ( p J p ! ) - I ) + l  as before. Then, AC is estimated using Neville tables of the 
extrapolants Ac= C,/(p"n'-'). Similarly, we estimate An( = R;/n2") after determining 
v by using the ratio method and Neville tables. The logarithmic correction [19,20] 
(log n)''4 is included when evaluating these estimations for SAW and NAW in d=4. The 
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2 4 6 8 10 
d 

Figure 4. Same as m figure I but for Ac. 

2.5 

2.0 

An 

1.5 

2 + L d 6 

Figure 5. Same as figure 4 but for An. 

computations of y and v are described elsewhere [21]. Figures 4 and 5 present the 
calculated amplitudes Ac and AB. The l/d expansions for SAW, NAW and 0' chains are 
consistent with the series extrapolations for d>5, but a striking discrepancy between 
them again appears in both figures 4 and 5 ,  with decreasing d. The Ac and A R  from 
exact enumerations exhibit maxima which become more prominent in passing from 6 
chains to SAW and then to NAW, while the I/d expansions again become divergent as 
d decreases. 

4. Estimation of y and Y from CAM theory 

The I /d  expansions of Ac and An appear to diverge for small d with increasing order 
of the expansions. This suggests [22] that y and v may be estimated by applying CAM 
theory [13] to our mean-field approximation I/d expansions. The CAM theory estima- 
tion of y for SAW in d=2 and 3 has been performed by Hu and Suzuki [23], exploiting 
the finiteorder-restricted walk approximation, and we now apply this method to obtain 
y and v for SAW and 0' chains. 

The CAM theory requires use of analogies between polymers and critical phenomena, 
and it is useful to explain the method using the latter language. The Ising model 
susceptibility x near the critical point T, is written as 

x N &-y (18) 

with e=(T-T , ) /T .  The CAM theory states that 

x Y Z(TJ H' 
where E=(T- Tc ) / z ,  Tc is the mean-field value of T,, and f('T,) represents the mean- 
field approximation to x which is given by 

f f (  E )  - I/(  T c - - T c ) ~ - ~ .  (20) 
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It should be noted that ~(Fc)+co as Fc+G. 

(f= 0) is given by 
Introducing the mean-field value y= 1 in (3), the generating function of C. for SAW 

m 

,yo=l+ C"x"%4c(o)(l-px)-' (21) 
"-1 

where p is the connectivity constant for SAW. Since p for polymers corresponds to T. 
for the Ising model [4], the comparison between (19) and (21) yields 

where y=  y - 1, p is the mean-field value of p ,  and we may regard (r in (6) as /I, i.e. 
o=p. 

- (P  -p)-' (22) 

The correlation length 5 near T. scales as 
5 -E-". (23) 

Since 5 and E correspond to R. and l/n for SAW [3], respectively, comparing (8) with 
(23) similarly provides the correspondence 

where A=2v-l. 
We may estimate y and n, i.e. y and v, for any f by using (6) and (7) provided 

that the exact p and some systematic mean-field values p. (n =0, 1, . . . ) in a successive 
approximation scheme are available. It is known that p=2.6381 (d=2), 4.6839 (d=3) 
[24] and p=6.772 (d=4) [19], and likewise, p0=2d and pl=2d-1 (=U)  for the 
random walk and non-reversing random walk, respectively, which represent the 0th 
and 1st approximations to SAW, respectively. 

AR(P)-(P -p)-a (24) 

Inverting equation (22) produces 

P=log [ A c ( ~ o ) / A c ( ~ J l / l ~ g  (APo/&I) (25) 
where Ap"=p*-p. Thus we have the estimates: y=1.75 (d=2), 1.18 (d=3), 1.05 
(d=4) and 2v= 1.72 (d=2), 1.20 (d=3), and 1.06 (d=4). These values are comparable 
with other estimates [24], y=1.163 and 2v=1.179 for d=3, and the accepted 
y=2v= 1 for d=4. However, for d=2 they deviate from Nienhuis's analytical values 
[25] y=43/32=1.34 ... and 2v=3/2=1.5. 

0 0.2 0.4 
t l n  

F w e  6. Estimation of p- for SAW in d - 3  from the plot of logp, versus "8. Arrow 
provides extrapolation limit. 
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-1.0 -0.8 -0.6 -0.L . -0.2 
log Apn 

Figtue I. log A,@.) versus log Apn for SAW in d-3 .  

It is possible to extract an altemative estimation of y and v from the l/d expansion 

p.(n=u"fl i = 0  aj+](fla- '  (26) 

with pl=a. The coefficients a; may be determined from (5) since F*(f)=logp(fl. 
Our expansions yield p.(n<6) for SAW and 8' chains as 

(5). Define the nth order mean-field value p. by 

p,(O)=u(l - U - ~ - ~ U - ~ -  1 1 ~ - ~ - 6 2 u - ~ )  (274 

ps(a-')=u( 1 - - 3 0 ~ -  1 8 ~ - ~ )  (276) 

and 

respectively. As illustrated in figure 6 for SAW in d=3 ,  plotting log p. against n-' and 
extrapolating to n+m determine p,, which is regarded as p. Estimates of y and A., 
i.e. of y and v, are likewise obtained by extrapolating plots of log A&.) and log A&.) 
versus log Ap., where Ap.=p.-p. The latter are displayed for d=3 in figures 7 and 

1.2 

I .1 

1.0 

0.9 

log A h  

Figure 8. Same as in 6gure 1 but for AR , 
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Table 3. Values of y and v for SAW and 0' chains as estimated from CAM theory using 
(27u) and (276). 

d YSAW 2vs*w YU 2va 

3 1.22 1.23 1.026 1.037 
3.5 1.06 1.07 1.007 1.011 
4 1.018 1.023 1.0017 1.0031 

8, respectively. The results thereby obtained for SAW and 0' chains are reproduced in 
table 3. This estimation method is ineffective for SAW, NAW (f=-l) and 6" chains in 
d=2 since the determination of p m  is difficult. On the other hand, the y and 2v 
for d=3.5 are in accord with those from standard series extrapolations of the exact 
enumeration data [21], y=1.07f0.015 and 2v=1.07f0.01, while those for d=3 are 
somewhat larger than expected. The CAM theory estimates for 6" chains are almost 
consistent with y=2v=1 at d=d (the marginal critical dimension d, is three for 0 
chains [26]). 

5. Conclusion 

Our l/d expansions of the internal energy and specific heat for SAW and 0' chains are 
shown to be consistent with the results from standard series analysis of exact enumera- 
tion data for d>5 and including non-integer dimensionalities h However, the latter 
exhibit a maximum near d=3 for both SAW and 0' chains whereas the former diverge 
as d decreases. The same tendency is noted for the respective amplitudes Ac and An of 
the free energy and end-to-end distance. The breakdown of the l / d  expansion reflects 
the increased contribution of fluctuation effects which change the critical exponents. A 
different estimation method for the exponents y and v for SAW and 8' chains in various d 
emerges by applying CAM theory to the I ldexpansions of Ac and An.  These alternative 
estimates are consistent with the accepted values. 
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